In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

نویسندگان

  • Sumohan Misra
  • Nian Liu
  • Johanna Nelson
  • Seung Sae Hong
  • Yi Cui
  • Michael F Toney
چکیده

Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li(15)Si(4) phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and experimental investigation of (de)lithiation-induced strains in bicontinuous silicon-coated nickel inverse opal anodes

A volume expansion of up to ~310% occurs upon the lithiation of silicon in Si-coated nickel inverse opal anodes, which causes (de)lithiation-induced mismatch stresses and strains between the Si and Ni during battery cyclical (dis)charging. These (de)lithiation-induced mismatch strains and stresses are modeled via sequentially coupled diffusionand stress-based finite element (FE) analysis, which...

متن کامل

Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries

Lithium-ion batteries using germanium as the anode material are attracting attention because of their high-capacity, higher conductivity, and lithium-ion diffusivity relative to silicon. Despite recent studies on Ge electrode reactions, there is still limited understanding of the reaction mechanisms governing crystalline Ge and the transformations into intermediate amorphous phases that form du...

متن کامل

Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation

Silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on Ba8Al y Si46-y as the anode material for lithium-ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X-ray diffraction shows no discernible structural or volume changes even after ...

متن کامل

Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating.

Electrochemically induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ T...

متن کامل

Ultrafast electrochemical lithiation of individual Si nanowire anodes.

Using advanced in situ transmission electron microscopy, we show that the addition of a carbon coating combined with heavy doping leads to record-high charging rates in silicon nanowires. The carbon coating and phosphorus doping each resulted in a 2 to 3 orders of magnitude increase in electrical conductivity of the nanowires that, in turn, resulted in a 1 order of magnitude increase in chargin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2012